
Accelerating Spatial Data Structures in Ray Tracing through
Precomputed Line Space Visibility

Kevin Keul
University of

Koblenz-Landau,
Koblenz, Germany

keul@uni-koblenz.de

Stefan Müller
University of

Koblenz-Landau,
Koblenz, Germany

stefanm@uni-koblenz.de

Paul Lemke
University of

Koblenz-Landau,
Koblenz, Germany

lemke@uni-koblenz.de

ABSTRACT
We propose an efficient approach to precompute and reuse visibility information based on existing spatial data
structures by using a precomputed data structure: the line space. This data structure provides an additional skip
condition by checking whether the subnodes in a hierarchical spatial data structures need to check for intersection
with the ray. We evaluate this method on different test scenes and show that it is able to achieve a remarkable
speed-up by using this skip condition. Furthermore we describe algorithms for fast set-up and traversal in detail
and discuss important strategies for this approach.
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1 INTRODUCTION
The basic principle of ray tracing is that every visual
effect is computed with rays that search for the near-
est primitive in a given direction from a known start-
ing point. When this intersection is found, more rays
starting from there on can be processed. With this it
is easy to calculate effects like shadows, reflexions and
refractions with only one additional ray for each effect.
With even more additional rays one can compute com-
plex visual effects such as ambient occlusion or indirect
lighting.

However, the quality of rendering comes with long ren-
dering times, where even the slightest improvement can
make a significant difference. The main limiting factor
is the time it needs to compute the nearest intersection
with the scene geometry. Therefore it is important to
use an acceleration data structure which supports the
task of finding the nearest intersection in an efficient
way. Many of the data structures used today aim to
subdivide the scene or the world space in such a way
that the scene is equally distributed over every subunit
in the data structure.

While this is already a studied field of research our ap-
proach goes beyond that. We try to precompute visi-
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bility tests on possible directional shafts additionally to
the main data structure. Those precomputations should
support the data structure by providing it with an ad-
ditional condition to decide if it is possible to skip the
main intersection computations. With this we achieve a
performance speed-up compared to the already created
acceleration data structure. Though it is a directional
precomputation, we compute every possible direction
and so enable visibility tests on the whole space with
every possible starting and end point. Through this it is
not only a speed-up for the initial coherent rays, but for
every possible ray.

Moreover we try to combine the ideas of existing spatial
data structures and extend the used traversal algorithms
to optimize the achieved speed-up. For this we build a
tree with a higher branching factor compared to the typ-
ically used data structures like the octree. In this paper
we call it the N-tree because of the arbitrarily branching
factor which can be dynamically chosen. With a higher
factor it is possible to skip more spatial groups of ele-
ments thanks to a single test with our directional data
structure.

2 RELATED WORK
In the past decades numerous data structures for ac-
celerating ray tracing have been created and improved.
Most of them aim to reduce intersection computations
with the scene geometry by using spatial subdivision of
the scene itself. An obvious way for this is to divide the
total space with a simple cartesian grid, called the uni-
form grid, where every cell, called voxel, has the same
size. For the traversal of this data structure it is possi-
ble to use known algorithms which are mostly based



on Bresenham’s 2D line drawing algorithm [Bre65],
for example the 3D-DDA (3D Digital Differential An-
alyzer) algorithm introduced by Amanatides and Woo
[AW87]. Today the use of grids benefits from quite
efficient voxelization algorithms [ED06][ED08][SS10].
The biggest disadvantage of uniform grids is the vari-
ance between cells, so that in most cases there not only
exist cells containing many scene candidates but also
cells which are completely empty. Nevertheless it was
shown that in some cases the use of uniform grids re-
sults in a significant performance gain in ray tracing
[HKH11].

Hierarchical data structures are one kind of improve-
ment. The goal is to have a high level of hierarchy and
therefore a high resolution in those areas where there
are many scene objects. Recursive grids were shown
to work well with objects of varying density by recur-
sively subdividing those voxels of the grid containing
many scene candidates. Jevans and Wyvill [JW88] used
an adaptive subdivision method where the branching
factor of a voxel was higher the more scene candidates
it contains. Octrees have a constant branching factor
of 8 subvoxels per voxel. All subvoxels within a voxel
have the same size so the subdivision of a voxel is ex-
actly in the center point. The traversal can be done
bottom-up, as by Samet [Sam89], or top-down, as in-
troduced by Revelles, Ureña and Lastra [RUnL00]. By
using KD-trees [Hav00] one tries to achieve better dis-
tributions of scene objects to subvoxels as octrees. For
this the split of the voxel is not necessarily in the cen-
ter point but along the axis aligned plane, which seper-
ates the containing scene objects in half. Extensions
try to improve the scalability via SIMD commands
[WPS∗03][RSH05] and GPU advantages in stack based
implementations [EVG04][FS05] as well as stackless
implementations [PGSS07]. Binary space partitioning
(BSP) trees, subdividing the space along arbitrary axes,
have been used [SS92][KM07] and as shown in [TI08]
they are more efficient as KD-Trees but need longer
build times due to more complex construction algo-
rithms.

Another approach to reduce computational overhead
is to use bounding volumes around scene objects in-
stead of spatial ordering. Bounding volume hierarchies
(BVH) [KK86] apply k-DOPs, spheres or other kinds
of proxy geometry and the traversal applies typical tree
search and sorting techniques to reduce the complex-
ity. Bounding interval hierarchy (BIH), a variation of
axis-aligned bounding box trees, was used to great ex-
tent [NS04][WK06]. Advancements of these try to use
SIMD parallelism [RSH05]. One way to do this is to
use multi bounding volume hierarchies (MBVH) which
in contrast to regular BVH store an arbitrarily number
of subnodes according to the level of SIMD instructions
[EG08]. Recently there have been implementations for

the GPU using stackless MBVH [ÁSK14] and GPU ac-
celerated construction [KA13].

Other acceleration methods try to take the visibility into
account. Arvo and Kirk presented 5D volume struc-
tures, starting at a 3D object with a 2D angle [AK87].
They achieved a notable performance gain but due to
its camera dependence it needs to be rebuild regularly
whereas our data structure is independent from the cam-
era position. Visibility preprocessing for urban scenes
was used in the way of identifying blocker primitives by
Bittner et al. [BWW01] and Leyvand et al. [LSCO03].
They also use the notation ”line space” but it has a dif-
ferent meaning compared to our usage. Visibility pre-
computations have been a big topic in radiosity calcu-
lations [CW12]. In this context Drettakis and Sillion
[DS97] used line space computations to precompute
visibilities in a very similar way as we do. In their paper
a line is considered as a link between two arbitrary sur-
face elements surrounded by a shaft, covering all poten-
tial rays between both surface elements. Shaft culling
was further used to optimize radiosity calculations by
Haines and Wallace [HW94].

3 OVERVIEW
Our goal is to extend typical hierarchical acceleration
data structures by precomputated visibility tests based
on lines and shafts. With this the extended data struc-
ture performs just one additional visibility operation per
node traversal for a given ray, which is done right be-
fore the intersection tests of the ray with the subjects
within the current node. If this operation fails, the fol-
lowing intersection tests of the ray and the node sub-
jects can be skipped completely. Note that the subjects
of the node can be the objects of the scene contained
by this node as well as all its own subnodes. Like most
acceleration data structures we do not aim to work with
dynamic scenes, so the set-up of the data structure does
not need to be able to compute in real time. Our goal
is to speed up ray tracing of static scenes and therefore
only compute the data structure once initially.

3.1 N-tree as initial data structure
As the base data structure we use the N-tree, a vari-
ation of the recursive grid [JW88] with fixed branch-
ing factor, which benefits the most from our visibil-
ity data structure, due to reasons which are explained
later on. Every edge of one N-tree node is divided in N
equally long parts. We need to have our subnodes equal
in size for our visibility test, which is also explained
later. Therefore, we are not able to use arbitrary split-
ting points like in KD-Trees, where different subnodes
of one node may differ in size. Although it is possible to
store scene objects (the candidates) in every hierarchi-
cal level of the N-tree, our performance results suggest
that only leaf nodes should contain candidates. Every



node of the N-tree is either a leaf node and contains
scene objects as candidates or consists of N ×N ×N
subnodes.

One can easily observe that the two main variables, N
and the maximum depth of the tree (for further exam-
ples d), can be arbitrarily chosen and different selec-
tions of the values can give similar results. For exam-
ple, do either N = 2,d = 6 (which resembles the typical
octree) as well as N = 8,d = 2 result in a resolution
of 64× 64× 64 entries on the deepest hierarchy level.
One observable difference lies in memory consumption
in sparsely filled trees, where a higher N results in more
memory usage due to a higher number of empty subn-
odes.

Algorithm 1 The traversal algorithm
1: procedure TRAVERSENODE(Ray r, Node n)
2: p← 0
3: if n has primitives then
4: p← nearest primitive intersecting r within n
5: else if n has subnodes then
6: while p = 0 and subnodes left do
7: s← next subnode in direction of r
8: if s is non-empty then
9: p← TRAVERSENODE(r,s)
10: end if
11: end while
12: end if
13: return p
14: end procedure

The pseudo code of the traversal algorithm for the N-
tree is shown in Algorithm 1. In principle it is divided
into two parts. At first, the exact start node has to be
found. Starting at the root node the next inner subn-
ode is chosen until the leaf node is reached. With this
the main traversal starts. Every processed node has ei-
ther candidates, which are tested for intersection with
the current ray (lines 3 and 4), or has subnodes, which
are recursively processed. All candidates within a leaf
node have to be tested, but if at least one intersection is
found, the traversal algorithm can stop. The step from
one node to the subnodes follows a top-down strategy as
proposed by Revelles et al. [RUnL00]. Like explained
above, in our case it is not possible that a node has both,
candidates and subnodes. As proposed by Amanatides
et al. [AW87], the subnodes are traversed in a grid like
manner (line 7). If a subnode neither contains candi-
dates nor subnodes, it does not need to be processed at
all and can be skipped in the traversal (lines 8-10). The
algorithm continues with the next subnode. In the fol-
lowing, those subnodes are called ”empty”. The loop
can stop if a primitive is found within a subnode (lines
6).

Figure 4a shows an exemplary traversal of the N-tree.
The ray starts at the origin O within the node starting
from S. At this point, every intersected subnode needs
to be checked although neither the geometry nor any
subnode containing the geometry is intersected by the
ray.

3.2 Visibility Information with the line
space

The line space builds upon the presented N-tree and
extends it with an additional visibility test which de-
cides whether a node can be skipped in the traversal.
Note that this additional skip condition still works if
the node has both, candidates and subnodes. Like ex-
plained above, a node contains of N×N×N subnodes.
Furthermore, each side of the nodes’ bounding volume
divides in N×N smaller sides with equal size, which
makes a total of 6×N ×N smaller sides in the vol-
ume. These smaller sides are countable and each of
these gets its own identifiable index. It is now possible
to create shafts from every possible index to every other
possible index. For each of those shafts it is decidable
whether there exists at least one subnode partially or
in total within the shaft that contains either candidates
or subnodes itself. If a shaft has only empty subnodes,
in other words the shaft does not intersect any subnode
that is non-empty, the shaft itself is called empty.

The line space for a given node contains the informa-
tion whether a shaft is empty or non-empty for every
possible shaft within this node. It can be represented as
2D array or texture where the first axis stands for every
possible start index and the second axis stands for every
possible end index of sides. So, the pixel with the coor-
dinates x and y denotes the shaft starting at the side with
the index x and ending at the side with the index y. The
value of the pixel represents whether the corresponding
shaft is empty or intersects with at least one non-empty
subnode.

In the step of deciding whether a shaft is empty, we
use subnodes instead of the discrete scene geometry for
two reasons. On the one hand, the scene geometry is
already arranged in the subnodes of the N-tree and pos-
sibly quite many primitives of the scene result in just a
few subnodes. On the other hand, the correspondence
between the shafts and all intersected subnodes can be
precomputed resulting in masking, which is further ex-
plained in the next paragraph. For these reasons it is
possible to accelerate the construction of the line space
effectively. One drawback to this is that there might be
some subnodes within a shaft that only contain prim-
itives of the scene that do not intersect with the shaft.
Therefore, it would not be necessary to mark the corre-
sponding entry in the line space. Anyway, it is marked
because of the intersection between the subnode and the
shaft. This results in possibly longer calculation times



during traversal but especially with a big N it becomes
negligible.
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Figure 1: (a) An empty 2D scene with one exemplary
ray and the belonging shaft between the start index 1
and the end index 8 and (b) the corresponding line space
where the shaft is marked in blue.

Figure 1 demonstrates the relation between a node con-
taining subnodes and the corresponding line space in
2D. There, the bounding box of a scene is subdivided
into a 2D N-tree with N = 4 consisting of 4×N = 16
elements. The border edges are numbered from 0 to
15. Each shaft is identified by the tuple of the start in-
dex and the end index of the sides. As a result the line
space is of size 16× 16, where each index tuple repre-
sents a shaft in the scene. The blue line in the left image
is represented by index (1,8) or (8,1) respectively.

A few trivial properties help to reduce the memory ca-
pacity of the line space:

1. LS(s; e) = LS(e; s): The line space is symmetric and
the upper right triangle grants sufficient information.

2. LS(s; s) = 0: The elements of the diagonal charac-
terize degenerated shafts with zero volume and can
therefore be omitted.

3. Coplanarity (Collinearity in 2D case): Shafts be-
tween coplanar sides are also degenerated, leading
to blocks around the diagonal.

In 2D each of the 4 bounding sides contains N sub-
sides so the total number of entries in the line space
is 4N× 4N = 16N2. Using the collinearity this can be
reduced by 4N2 and afterwards divided in half due to
symmetry, resulting in a total number of entries of size
6N2. In 3D each of the 6 bounding sides of the bound-
ing box of the node contains N×N subsides and there-
fore the line space has 6N2 × 6N2 = 36N4 entries in
total. In the same way as for the 2D case this can be
reduced to a total of 15N4 entries due to coplanaraty
and symmetry. Note that this is only the size of the line
space for a single node and therefore the memory con-
sumption is quite high with a big N. In our test cases
we found that N = 10 is sufficient for most cases and
the memory consumption is appropriate. All entries for

one line space are stored in a list and accessed with an
identifier. This identifier is independent from symmetry
and results in the same entry for both of the symmetric
cases.

3.3 Set-up of the line space
Figure 2 shows the relevance of one non-empty subn-
ode (marked in red) to the line space. On the left
side for each possible start index it is shown which
shafts count as non-empty because of the marked subn-
ode. The right side shows the corresponding line space
where exactly those pixels are marked that belong to
non-empty shafts. Note that if only the marked subnode
is non-empty, the line space would always result in this
outcome. It is not relevant how many scene primitives
are contained in this subnode or how they are located.
So, the resulting line space which is presented can serve
as a mask for this subnode.
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Figure 2: (a) All shafts covering one subnode (red) in
2D and (b) the resulting line space (bit mask). Ev-
ery shaft with start index x and end index y fills the
corresponding pixel in the line space. Symmetry and
collinearity of the line space are quite obvious.

With this it is possible to precompute the masks for ev-
ery possible subnode within a node and combine them
to a mask atlas. This results in N3 masks (one for each
possible subnode) for the mask atlas, which then con-
tains N3×15N4 entries in total.

The pseudo code for the set-up algorithm for all line
spaces of every node in the N-tree is shown in Algo-
rithm 2. Our approach works in a top-down way start-
ing with the root node. A line space for a node is only
necessary, if the node itself contains subnodes. Every
line space is computed with the help of the mask at-
las. For every non-empty subnode of a node all entries
of the corresponding masks are combined and result in
the line space of the current node (lines 4-6). In the
binary case, where it only matters whether a shaft is
empty or not, this combination can be done with a sim-
ple ”or” operation for every entry of the mask with the
corresponding entry in the line space. The line spaces
of every subnode consisting of subnodes itself are then
computed recursively (lines 7-9).



Algorithm 2 Calculation of Line Space starting in the
root node
1: procedure CALCLINESPACE(Node n)
2: LS← create LineSpace for n
3: for all subnodes s ∈ n do
4: if s is non-empty then
5: mask← mask denoted by s in n
6: ADDMASKTOLINESPACE(LS, mask)
7: if s has subnodes then
8: CALCLINESPACE(child)
9: end if
10: end if
11: end for
12: end procedure

Figure 3 presents an example for a 3D line space. As
with the previous examples, N is set to 4. It is obvious
that the line space is much more complex compared to
a 2D line space. Where in the 2D case every side is
subdivided in 4 smaller parts, making it a total of 16
subsides, in the 3D case every of the 6 bounding sides
is subdivided in 16 smaller sides and therefore making a
total of 96 possible start and end sides. Figure 3b shows
the mask for one subnode (marked in red). For every
start index from s ∈ 0..95, a one bit entry provides the
information, whether the shaft to end index e ∈ 0..95
intersects this subnode. In the shown example, we have
9 resulting shafts for the starting patch s = 37 which
can be seen in the red column of the line space.

(a) (b)

Figure 3: (a) All shafts in 3D intersecting the red sub-
node from the start index with index 37. (b) Line space
bit mask (43 subnodes with 962 LS-entries) for the red
subnode. Note that the subnode itself can be subdivided
as well and can therefore include its own line space.

3.4 Traversal of the line space
The traversal of the line space is mostly equivalent to
the traversal presented in algorithm 1. Indeed the pre-
sented algorithm is just extended by another skip condi-
tion, which can be added before the subnodes are pro-
cessed (after line 5 in algorithm 1). The skip condi-
tion checks, whether the line space entry corresponding
to the current node is marked. If this is not the case,

it means that all subnodes within the current shaft are
empty and therefore no subnode needs to be processed
with the current ray. The shaft itself is determined by
the precise start and end index within the node which
are intersected by the ray. These have to be computed
first in order to identify the shaft the current ray belongs
to.

(a) (b)

Figure 4: (a) Traversal of the N-tree. Although no subn-
ode containing geometry (red) is intersected by the ray,
the algorithm traverses every possible subnode (dark
blue) intersected by the ray. (b) traversal of the line
space. Instead of testing every subnode intersected by
the ray, it is first checked if the corresponding shaft in-
tersects any non-empty subnodes. If this is not the case
(like shown with the darker blue shafts), all subnodes
within the shaft are skipped.

Figure 4 presents an exemplary traversal using the line
space. For a given ray, we compute the intersection
with the root node to determine the initial start index
S and end index E. The x-, y-, z-coordinates of S and
E are mapped to side indices of the root node surface,
yielding the indices for the top level line space. In the
example the top level shaft contains non-empty subn-
odes. Therefore, we select the subnode covering the
ray origin O and from there on we start the traversal of
the subnodes similar to the traversal of the N-tree. If
one of these inner nodes is not subdivided, we check
the candidate list of this node (if any) for intersection
and continue with the next inner node, if no intersec-
tion is found. If the node is subdivided, we check the
next level line space first with new start and end indices.
If the shaft is not empty, we proceed with the traversal
with smaller increments. In the example all inner shafts
(in dark blue) corresponding to subnodes indicate that
there are no non-empty inner subnodes and therefore
these inner subnodes can be skipped at all.

4 RESULTS AND DISCUSSION
Our method was implemented in C++, exploiting SIMD
operations (SSE) and multi-threading on a CPU. The
results were evaluated on a PC with AMD Phenom II
X6 1090T (6 cores, 3.5GHz) and 16 GB DDR3 RAM.



(a) BUNNY (69k triangles) (b) DRAGON (871k trian-
gles)

(c) SPHEREFLAKE (597k
spheres)

(d) DUBROVNIK SPONZA
(66k triangles)

(e) CONFERENCE ROOM
(331k triangles)

Figure 5: Test scenes used for the performance measurements. Those include individual objects with a varying
number of triangles (Bunny and Dragon), a fractal scene using spheres instead of triangles and architectural scenes
with different number of triangles (Dubrovnik sponza and Conference room). The images were rendered using 3
light sources and multiple levels of reflection.

The used ray tracer computes intersection points for pri-
mary rays and up to 10 levels of reflections, where every
primitive of the scene geometry is reflecting the ray. For
every intersection with scene geometry 3 light sources
are used for lighting and for each of those one shadow
ray is evaluated. By using reflections and shadow rays
we mostly work on more or less incoherent rays, which
are traced by our method with no difference in compar-
ison to coherent rays. All scenes were rendered with a
resolution of 512× 512 using different camera angles.
The result is the average run time.

Multiple well-known test scenes with different char-
acteristics and of different size of primitives have
been used for evaluation (shown in figure 5). We
divide those scenes in scenes showing individual
objects only (Bunny and Dragon), architectural scenes
(Dubrovnik sponza and Conference room) and a
fractal scene (sphere flake using spheres instead of
triangles). The individual objects represent the quality
of the data structure for a single object only, where
many primitives are concentrated in small space. For
this purpose the Bunny is a model with a rather low
number of primitives, whereas the Dragon consists of
a lot of primitives. The architectural scenes represent
conventional scenes, which may for example be used
in games or films. We use the sponza as a scene with
few primitives and the Conference room as scene with
quite many primitives. The sphere flake is a fractal
scene, which consists of a lot of primitives (spheres in
our example). Those primitives are not concentrated in
the center of the object, but are equally distributed.

For the N-tree and the line space we evaluate the size of
the data structure and the runtime performance within
our ray tracer. We compare those with the standard
implementations of the uniform grid and the octree to
show that the use of visibility information is an im-
provement of typical well-known spatial data struc-
tures. Furthermore we vary in the values of the two
paremeters of the N-tree and the line space, which are
the branching factor N and the maximal depth d, and
investigate the differences in size and performance.

The results of the tests are shown in table 1. We eval-
uated several parameter sets for all data structures and
only the best for each scene were considered. Note that
the value of d belongs to the maximal depth of the data
structure, which is not always needed. In scenes with a
small number of primitives it is therefore possible that
a big value of d does not provide any benefit.

The uniform grid grants good performance, especially
in rather small scenes. The memory size used is in all
test cases among the smallest. The optimal resolution
for the uniform grid in most test scenes is 1283 voxels
in total. A higher resolution results in a higher traver-
sal cost and a much higher memory consumption of the
grid structure and might therefore only be beneficial in
big scenes (like the dragon). In comparison to the uni-
form grid, the octree has a better performance in those
big scenes (dragon and conference room), but worse in
small scenes. The memory consumption depends on
the value of d, where a small value results in a smaller
memory consumption. In big scenes a big value of d
is beneficial for performance but unfavorable for the re-
quired memory size.

The N-tree has a better performance than the octree,
due to the higher branching factor, where every node
is traversed in a grid-like manner. In most cases the
N-tree performs similar to or better than the uniform
grid, especially in the architectural scenes or in scenes
with a high number of primitives. While a high value of
N grants better performance, the higher branching fac-
tor results also in a bigger memory consumption, espe-
cially in sparsely filled N-trees. If a node is subdivided,
it results in quite a lot of subnodes (N3), even if only a
few of them are actually needed. The optimal param-
eters of the N-tree in respect to the performance have
been achieved with a value of N between 6 and 10. The
optimal value of d is mostly either 3 or 4.

The line space, as an extension to the N-tree, is ben-
eficial in all cases. Mostly it achieves a performance
gain of up to 30% in comparison to the N-tree. In all
test scenes the optimal parameters were the same as for
the conventional N-tree. Obviously the additional usage



Scene Uniform Grid Octree N-tree Line Space
parameters 1283 d→ 7 N→ 9, d→ 3 N→ 9, d→ 3

BUNNY time per frame (s) 0,111 0,137 0,123 0,101
(69k triangles) memory (MB) 78,4 55,2 82,5 106,7

parameters 2563 d→ 9 N→ 7, d→ 4 N→ 7, d→ 4
DRAGON time per frame (s) 0,327 0,332 0,297 0,253
(871k triangles) memory (MB) 441,0 438,1 823,2 929,6

parameters 1283 d→ 7 N→ 8, d→ 3 N→ 8, d→ 3
SPHEREFLAKE time per frame (s) 0,151 0,208 0,179 0,129
(597k spheres) memory (MB) 200,8 187,9 511,6 644,0

parameters 1283 d→ 10 N→ 10, d→ 3 N→ 10, d→ 3
SPONZA time per frame (s) 1,224 1,771 1,414 1,192
(66k triangles) memory (MB) 80,4 55,1 220,0 294,7

parameters 1283 d→ 10 N→ 10, d→ 3 N→ 10, d→ 3
CONFERENCE time per frame (s) 1,395 1,593 1,300 1,089
(331k triangles) memory (MB) 213,3 190,8 236,8 249,9

Table 1: Performance evaluations for the test scenes shown in figure 5. All scenes were rendered using 3 light
sources and up to 10 reflections. We have compared typical data structures (uniform grid and octree) with the
N-tree without and with the usage of the line space. Only the best parameter set in terms of traversal time for each
data structure and each scene is shown.

of the line space results in a bigger memory consump-
tion, where a high value of N is especially bad, because
of the high number of possible shafts (15N4) for ev-
ery subdivided node. Due to the fact that only non-leaf
nodes need a line space, this increment in memory size
is quite acceptable in comparison to the total required
memory size. While high values of N and d are a disad-
vantage in terms of memory consumption, they can be
beneficial for traversal performance. A big value of N
leads to long but slim shafts referring to many but small
subnodes. If the shaft is empty, it therefore allows for a
quick skip of many subnodes in just one computation.
Moreover, long and slim shafts contain small subnodes.
Even if these subnodes are intersecting the shaft only
for a small part, the amount of subnode space outside
of the shaft is just small in comparison to the length of
the shaft.

An important observation is that the traversal perfor-
mance and the memory consumption significantly de-
pend on the values of the branching factor N and the
maximal depth d. While the table shows only the best
values for every data structure, it is observable that the
results are different for the cases where the values for
all data structures lead to the same resolution. One ex-
ample for those values are a resolution of 5123 for the
uniform grid, a maximal depth of 9 for the octree and
the values N = 8 and d = 3 for the N-tree and the line
space. In those cases the size of the data strucutre and
the performance of the traversal are way better for the
N-tree in comparison to the uniform grid and the octree.

The main benefit of the N-tree comes with the usage of
the line space. For this we evaluated the performance
gain of the line space in comparison to the N-tree for
different values of N and d. The results are shown in

table 2. The evaluated test scene is the Bunny, but the
results for the other scenes are similar and indicate the
same results. In all test cases it is observable that the
usage of the line space for a small value of N (N < 5)
brings little to no benefit. The same applies to big val-
ues of N (N > 10). As explained above the reason for
the former is that the shafts are wider if N is small and
the amount of subnode space outside of the shaft is big-
ger in comparison to its length. While this is unprob-
lematic for long shafts with a big value of N, the prob-
lem there is that the shaft loses the potential of predic-
tion because of its length. One non-empty subnode is
sufficient to mark the corresponding shaft, so that the
traversal needs to check all subnodes . It is observable
that big values of d may not make any difference in
performance. The reason for this is that the geometry
is sufficiently stored in higher nodes and therefore the
maximum depth of d is not needed. Moreover, if the
values of N and d are too big (N > 10,d > 5) the data
structure is too memory consuming and therefore not
usable. The benefit of the line space as well as the op-
timal choice of the parameters are scene dependant, but
in all choices of parameters the usage of the line space
results in better performance than the corresponding N-
tree without line space.

5 CONCLUSION AND FUTURE
WORK

We have presented a novel and effective extension to
existing spatial data structures. First, the N-tree, a vari-
ation of the Octree, has been discussed. Based on this
we introduced the line space as an advancement for the
N-tree by taking directional visibility information into
account. Algorithms for the set-up and the improved



Parameters N-tree LS ∆

N→ 5, time (s) 0,342 0,333 -2,7%
d→ 3 size (MB) 40,3 40,8 +1,1%
N→ 5, time (s) 0,137 0,123 -9,9%
d→ 4 size (MB) 57,1 60,3 +5,7%
N→ 5, time (s) 0,136 0,126 -6,9%
d→ 5 size (MB) 57,6 61,9 +7,5%
N→ 6, time (s) 0,198 0,180 -8,8%
d→ 3 size (MB) 42,7 44,2 +3,6%
N→ 6, time (s) 0,144 0,126 -12,9%
d→ 4 size (MB) 96,9 112,2 +15,7%
N→ 6, time (s) 0,145 0,126 -12,9%
d→ 5 size (MB) 96,8 112,4 +16,0%
N→ 7, time (s) 0,148 0,131 -11,6%
d→ 3 size (MB) 47,5 52,4 +10,4%
N→ 7, time (s) 0,144 0,127 -11,9%
d→ 4 size (MB) 109,5 132,8 +21,3%
N→ 8, time (s) 0,151 0,118 -21,9%
d→ 3 size (MB) 56,8 70,5 +24,0%
N→ 9, time (s) 0,123 0,101 -18,2%
d→ 3 size (MB) 82,5 106,7 +29,4%
N→ 10, time (s) 0,166 0,112 -32,9%
d→ 3 size (MB) 123,3 172,8 +40,1%

Table 2: Performance comparison between the N-tree
without and with the usage of the line space (LS) for
different parameter sets of N and d. It is shown that
higher values for these parameters result in a bigger
memory consumption but leads mostly to a smaller
traversal time with the usage of the line space. The used
scene is the Bunny as individual object, other scenes
produce similar results.

traversal were shown. By using binary information for
the possible emptiness of all shafts within one node we
conclude whether it is necessary to test the subnodes of
the current node or if we are able to skip them. This ad-
ditional skip condition results in a notable speed-up for
all shown test cases. From there on there exist multiple
paths for further study.

The binary entries in the line space are enough for es-
timating whether a ray from one point to another might
be intersected by scene geometry. With this informa-
tion it is possible to compute approximated shadows
without testing the scene geometry for intersection at
all. This might be sufficient for shadow computations
of non-primary rays. Even for primary rays the result-
ing error may become negligible with a high value of
d. This technique might even be used in rasterization
where the computation of soft shadows is a rather tough
topic.

By using a counter instead of the binary entries within
the line space the data structure can be updated during
runtime and therefore it can possibly be fast enough to
handle dynamic scenes in realtime. The counter is in-
cremented for each object intersecting a shaft. Thus, the

line space can efficiently be rebuilt by decrementing the
counter if geometry is removed and by incrementing the
counter if geometry is added.

An obvious option for faster set-up or better runtime
performance is to port the data structure and the traver-
sal to latest generation GPU architectures since many
necessary tasks could benefit from parallel computa-
tion.

In this paper we presented that the line space as direc-
tional visibility data structure is able to improve exist-
ing spatial data structures. Moreover, in future work we
try to extend the impact of directional visibility con-
ditions to current state-of-the-art data structures like
Bounding Volume Hierarchies. We think that some
kind of line space structure could even improve these
data structures resulting in a win in performance for lat-
est generation ray tracing data structures.

Another attempt would be to not only save binary or in-
teger information in the line space, but to save the list of
candidates directly in the shafts instead of saving them
in the nodes of the N-tree. This would result in sev-
eral advantages. First, the candidates within the shaft
can be sorted beforehand which would improve perfor-
mance during runtime. Moreover, the traversal itself
would work without the typical node structure based on
voxels but rather based on shafts which is more accurate
and efficient.
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